Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genetics ; 225(4)2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37824828

RESUMO

Quantitative genetics models have shown that long-term selection responses depend on initial variance and mutational influx. Understanding limits of selection requires quantifying the role of mutational variance. However, correlative responses to selection on nonfocal traits can perturb the selection response on the focal trait; and generations are often confounded with selection environments so that genotype by environment (G×E) interactions are ignored. The Saclay divergent selection experiments (DSEs) on maize flowering time were used to track the fate of individual mutations combining genotyping data and phenotyping data from yearly measurements (DSEYM) and common garden experiments (DSECG) with four objectives: (1) to quantify the relative contribution of standing and mutational variance to the selection response, (2) to estimate genotypic mutation effects, (3) to study the impact of G×E interactions in the selection response, and (4) to analyze how trait correlations modulate the exploration of the phenotypic space. We validated experimentally the expected enrichment of fixed beneficial mutations with an average effect of +0.278 and +0.299 days to flowering, depending on the genetic background. Fixation of unfavorable mutations reached up to 25% of incoming mutations, a genetic load possibly due to antagonistic pleiotropy, whereby mutations fixed in the selection environment (DSEYM) turned to be unfavorable in the evaluation environment (DSECG). Global patterns of trait correlations were conserved across genetic backgrounds but exhibited temporal patterns. Traits weakly or uncorrelated with flowering time triggered stochastic exploration of the phenotypic space, owing to microenvironment-specific fixation of standing variants and pleiotropic mutational input.


Assuntos
Modelos Genéticos , Seleção Genética , Mutação , Fenótipo , Genótipo
2.
Mol Ecol ; 31(21): 5581-5601, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35984725

RESUMO

Divergence processes in crop-wild fruit tree complexes in pivotal regions for plant domestication such as the Caucasus and Iran remain little studied. We investigated anthropogenic and natural divergence processes in apples in these regions using 26 microsatellite markers amplified in 550 wild and cultivated samples. We found two genetically distinct cultivated populations in Iran that are differentiated from Malus domestica, the standard cultivated apple worldwide. Coalescent-based inferences showed that these two cultivated populations originated from specific domestication events of Malus orientalis in Iran. We found evidence of substantial wild-crop and crop-crop gene flow in the Caucasus and Iran, as has been described in apple in Europe. In addition, we identified seven genetically differentiated populations of wild apple (M. orientalis), not introgressed by the cultivated apple. Niche modelling combined with genetic diversity estimates indicated that these wild populations likely resulted from range changes during past glaciations. This study identifies Iran as a key region in the domestication of apple and M. orientalis as an additional contributor to the cultivated apple gene pool. Domestication of the apple tree therefore involved multiple origins of domestication in different geographic locations and substantial crop-wild hybridization, as found in other fruit trees. This study also highlights the impact of climate change on the natural divergence of a wild fruit tree and provides a starting point for apple conservation and breeding programmes in the Caucasus and Iran.


Assuntos
Malus , Malus/genética , Domesticação , Pool Gênico , Irã (Geográfico) , Melhoramento Vegetal
3.
Mol Biol Evol ; 36(4): 709-726, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30657939

RESUMO

Allopolyploidy, combining interspecific hybridization with whole genome duplication, has had significant impact on plant evolution. Its evolutionary success is related to the rapid and profound genome reorganizations that allow neoallopolyploids to form and adapt. Nevertheless, how neoallopolyploid genomes adapt to regulate their expression remains poorly understood. The hypothesis of a major role for small noncoding RNAs (sRNAs) in mediating the transcriptional response of neoallopolyploid genomes has progressively emerged. Generally, 21-nt sRNAs mediate posttranscriptional gene silencing by mRNA cleavage, whereas 24-nt sRNAs repress transcription (transcriptional gene silencing) through epigenetic modifications. Here, we characterize the global response of sRNAs to allopolyploidy in Brassica, using three independently resynthesized Brassica napus allotetraploids originating from crosses between diploid Brassica oleracea and Brassica rapa accessions, surveyed at two different generations in comparison with their diploid progenitors. Our results suggest an immediate but transient response of specific sRNA populations to allopolyploidy. These sRNA populations mainly target noncoding components of the genome but also target the transcriptional regulation of genes involved in response to stresses and in metabolism; this suggests a broad role in adapting to allopolyploidy. We finally identify the early accumulation of both 21- and 24-nt sRNAs involved in regulating the same targets, supporting a posttranscriptional gene silencing to transcriptional gene silencing shift at the first stages of the neoallopolyploid formation. We propose that reorganization of sRNA production is an early response to allopolyploidy in order to control the transcriptional reactivation of various noncoding elements and stress-related genes, thus ensuring genome stability during the first steps of neoallopolyploid formation.


Assuntos
Brassica napus/genética , Especiação Genética , Pequeno RNA não Traduzido/metabolismo , Tetraploidia , Brassica napus/metabolismo , Elementos de DNA Transponíveis
4.
Plant Physiol ; 172(3): 1732-1745, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27613850

RESUMO

Small proteins have long been overlooked due to their poor annotation and the experimental challenges they pose. However, in recent years, their role in various processes has started to emerge, opening new research avenues. Here, we present the isolation and characterization of two allelic mutants, twisted seed1-1 (tws1-1) and tws1-2, which exhibit an array of developmental and biochemical phenotypes in Arabidopsis (Arabidopsis thaliana) seeds. We have identified AT5G01075 as the subtending gene encoding a small protein of 81 amino acids localized in the endoplasmic reticulum. TWS1 is strongly expressed in seeds, where it regulates both embryo development and accumulation of storage compounds. TWS1 loss-of-function seeds exhibit increased starch, sucrose, and protein accumulation at the detriment of fatty acids. TWS1 is also expressed in vegetative and reproductive tissues, where it is responsible for proper epidermal cell morphology and overall plant growth. At the cellular level, TWS1 is responsible for cuticle deposition on epidermal cells and organization of the endomembrane system. Finally, we show that TWS1 is a single-copy gene in Arabidopsis, and it is specifically conserved among angiosperms.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriologia , Desenvolvimento Vegetal , Sementes/embriologia , Alelos , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Carbono/farmacologia , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Mutação/genética , Fenótipo , Desenvolvimento Vegetal/efeitos dos fármacos , Desenvolvimento Vegetal/genética , Epiderme Vegetal/efeitos dos fármacos , Epiderme Vegetal/metabolismo , Plantas Geneticamente Modificadas , Sementes/efeitos dos fármacos , Sementes/ultraestrutura , Vacúolos/efeitos dos fármacos , Vacúolos/metabolismo
5.
Mol Ecol ; 24(12): 2937-54, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25913177

RESUMO

While modern agriculture relies on genetic homogeneity, diversifying practices associated with seed exchange and seed recycling may allow crops to adapt to their environment. This socio-genetic model is an original experimental evolution design referred to as on-farm dynamic management of crop diversity. Investigating such model can help in understanding how evolutionary mechanisms shape crop diversity submitted to diverse agro-environments. We studied a French farmer-led initiative where a mixture of four wheat landraces called 'Mélange de Touselles' (MDT) was created and circulated within a farmers' network. The 15 sampled MDT subpopulations were simultaneously submitted to diverse environments (e.g. altitude, rainfall) and diverse farmers' practices (e.g. field size, sowing and harvesting date). Twenty-one space-time samples of 80 individuals each were genotyped using 17 microsatellite markers and characterized for their heading date in a 'common-garden' experiment. Gene polymorphism was studied using four markers located in earliness genes. An original network-based approach was developed to depict the particular and complex genetic structure of the landraces composing the mixture. Rapid differentiation among populations within the mixture was detected, larger at the phenotypic and gene levels than at the neutral genetic level, indicating potential divergent selection. We identified two interacting selection processes: variation in the mixture component frequencies, and evolution of within-variety diversity, that shaped the standing variability available within the mixture. These results confirmed that diversifying practices and environments maintain genetic diversity and allow for crop evolution in the context of global change. Including concrete measurements of farmers' practices is critical to disentangle crop evolution processes.


Assuntos
Agricultura/métodos , Evolução Biológica , Produtos Agrícolas/genética , Variação Genética , DNA de Plantas/genética , Genes de Plantas , Marcadores Genéticos , Genética Populacional , Repetições de Microssatélites , Modelos Genéticos , Fenótipo , Seleção Genética , Triticum/genética
6.
Evol Appl ; 5(8): 779-95, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23346224

RESUMO

Since the domestication of crop species, humans have derived specific varieties for particular uses and shaped the genetic diversity of these varieties. Here, using an interdisciplinary approach combining ethnobotany and population genetics, we document the within-variety genetic structure of a population-variety of bread wheat (Triticum aestivum L.) in relation to farmers' practices to decipher their contribution to crop species evolution. Using 19 microsatellites markers, we conducted two complementary graph theory-based methods to analyze population structure and gene flow among 19 sub-populations of a single population-variety [Rouge de Bordeaux (RDB)]. The ethnobotany approach allowed us to determine the RDB history including diffusion and reproduction events. We found that the complex genetic structure among the RDB sub-populations is highly consistent with the structure of the seed diffusion and reproduction network drawn based on the ethnobotanical study. This structure highlighted the key role of the farmer-led seed diffusion through founder effects, selection and genetic drift because of human practices. An important result is that the genetic diversity conserved on farm is complementary to that found in the genebank indicating that both systems are required for a more efficient crop diversity conservation.

7.
Theor Appl Genet ; 123(6): 907-26, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21761163

RESUMO

Earliness is very important for the adaptation of wheat to environmental conditions and the achievement of high grain yield. A detailed knowledge of key genetic components of the life cycle would enable an easier control by the breeders. The objective of the study was to investigate the effect of candidate genes on flowering time. Using a collection of hexaploid wheat composed of 235 lines from diverse geographical origins, we conducted an association study for six candidate genes for flowering time and its components (vernalization sensitivity and earliness per se). The effect on the variation of earliness components of polymorphisms within the copies of each gene was tested in ANOVA models accounting for the underlying genetic structure. The collection was structured in five groups that minimized the residual covariance. Vernalization requirement and lateness tend to increase according to the mean latitude of each group. Heading date for an autumnal sowing was mainly determined by the earliness per se. Except for the Constans (CO) gene orthologous of the barley HvCO3, all gene polymorphisms had a significant impact on earliness components. The three traits used to quantify vernalization requirement were primarily associated with polymorphisms at Vrn-1 and then at Vrn-3 and Luminidependens (LD) genes. We found a good correspondence between spring/winter types and genotypes at the three homeologous copies of Vrn-1. Earliness per se was mainly explained by polymorphisms at Vrn-3 and to a lesser extent at Vrn-1, Hd-1 and Gigantea (GI) genes. Vernalization requirement and earliness as a function of geographical origin, as well as the possible role of the breeding practices in the geographical distribution of the alleles and the hypothetical adaptive value of the candidate genes, are discussed.


Assuntos
Flores/genética , Flores/fisiologia , Triticum/genética , Triticum/fisiologia , Alelos , Sequência de Bases , Mapeamento Cromossômico , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Estudos de Associação Genética , Variação Genética , Genótipo , Haplótipos , Desequilíbrio de Ligação , Família Multigênica , Fenótipo , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Alinhamento de Sequência , Análise de Sequência de DNA
8.
BMC Plant Biol ; 10: 2, 2010 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-20047666

RESUMO

BACKGROUND: Kernel moisture at harvest is an important trait since a low value is required to prevent unexpected early germination and ensure seed preservation. It is also well known that early germination occurs in viviparous mutants, which are impaired in abscisic acid (ABA) biosynthesis. To provide some insight into the genetic determinism of kernel desiccation in maize, quantitative trait loci (QTLs) were detected for traits related to kernel moisture and ABA content in both embryo and endosperm during kernel desiccation. In parallel, the expression and mapping of genes involved in kernel desiccation and ABA biosynthesis, were examined to detect candidate genes. RESULTS: The use of an intermated recombinant inbred line population allowed for precise QTL mapping. For 29 traits examined in an unreplicated time course trial of days after pollination, a total of 78 QTLs were detected, 43 being related to kernel desiccation, 15 to kernel weight and 20 to ABA content. Multi QTL models explained 35 to 50% of the phenotypic variation for traits related to water status, indicating a large genetic control amenable to breeding. Ten of the 20 loci controlling ABA content colocated with previously detected QTLs controlling water status and ABA content in water stressed leaves. Mapping of candidate genes associated with kernel desiccation and ABA biosynthesis revealed several colocations between genes with putative functions and QTLs. Parallel investigation via RT-PCR experiments showed that the expression patterns of the ABA-responsive Rab17 and Rab28 genes as well as the late embryogenesis abundant Emb5 and aquaporin genes were related to desiccation rate and parental allele effect. Database searches led to the identification and mapping of two zeaxanthin epoxidase (ZEP) and five novel 9-cis-epoxycarotenoid dioxygenase (NCED) related genes, both gene families being involved in ABA biosynthesis. The expression of these genes appeared independent in the embryo and endosperm and not correlated with ABA content in either tissue. CONCLUSIONS: A high resolution QTL map for kernel desiccation and ABA content in embryo and endosperm showed several precise colocations between desiccation and ABA traits. Five new members of the maize NCED gene family and another maize ZEP gene were identified and mapped. Among all the identified candidates, aquaporins and members of the Responsive to ABA gene family appeared better candidates than NCEDs and ZEPs.


Assuntos
Ácido Abscísico/biossíntese , Dessecação , Locos de Características Quantitativas , Zea mays/genética , Mapeamento Cromossômico , Endosperma/genética , Endosperma/metabolismo , Perfilação da Expressão Gênica , Genes de Plantas , Família Multigênica , Filogenia , RNA de Plantas/genética , Alinhamento de Sequência , Água/metabolismo , Zea mays/embriologia , Zea mays/metabolismo
9.
Mol Ecol ; 17(3): 930-43, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18194164

RESUMO

Experimental populations evolving under natural selection represent an interesting tool to study genetic bases of adaptation. Evolution of genes possibly involved in adaptive response can be followed together with the corresponding phenotypic traits. Using experimental populations of hexaploid wheat, we studied the evolution of flowering time, a major adaptive trait that synchronizes the initiation of reproduction and the occurrence of favourable environmental conditions. During 12 generations, three populations were grown in contrasted environments (Vervins North France, Le Moulon near Paris, Toulouse South France) under the influence of natural selection, drift, mutation and recombination. Evolution of diversity at the major gene VRN-1 involved in wheat vernalization response has been analysed jointly with earliness estimated in controlled conditions. Whatever the population, rapid phenotypic changes as well as parallel genotypic variations were observed in the first seven generations, probably as the result of selection acting on this major gene which explains 80% of the trait variation overall. Different allelic combinations at physically unlinked copies of VRN-1 located on distinct genomes (A, B and D) were selected between populations. As theoretically expected, due to population differentiation, a high level of genetic diversity was maintained overall in generation 12. Surprisingly, in two populations out of three, the emergence of new alleles by mutation or migration, coupled with temporal variable selection or frequency-dependent selection, allowed to maintain within-population diversity despite local genetic drift and natural selection. This result may plead for an evolutionary approach of wheat genetic resource conservation.


Assuntos
Evolução Molecular , Proteínas de Plantas/genética , Triticum/genética , Adaptação Biológica/genética , Alelos , DNA de Plantas/química , DNA de Plantas/genética , Flores/genética , Flores/fisiologia , França , Variação Genética , Fenótipo , Reação em Cadeia da Polimerase , Polimorfismo Genético , Seleção Genética , Análise de Sequência de DNA , Triticum/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...